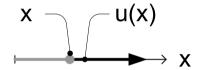
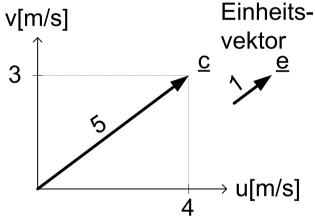

Strömung als Geschwindigkeitsfeld

SL/Vek


Raumströmung

Ebene Strömung


Eindimensionale Strömung



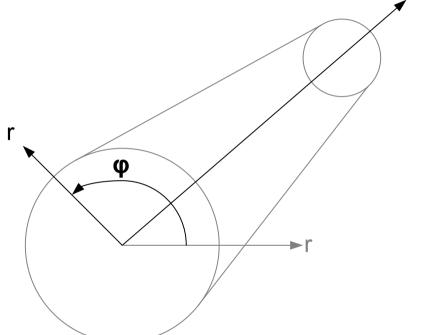
Scherströmung

Rohrströmung

$$\underline{c} = (u,v) = c \underline{e}$$

= (4,3) m/s = 5 (0.8,0.6) m/s

Prof. Dr. Mathias Fraaß


Strömungslehre

Zylinderkoordinaten

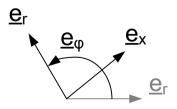
SL/ZylKdntn

(Hinweis: Die folgenden Indizes und die Wahl der Reihenfolge sind Konvention in dieser Veranstaltung. In der Literartur findet man andere Indizes (z für die axiale Richtung) und eine andere Reihenfolge (axiale Richtung zuletzt)

Zylinderkoordinaten in einem Rohr X

axiale Richtung "x"

in Strömungsrichtung gerichtet auch gekrümmter Verlauf möglich z.B. Stromlinie in Rohrmitte


radiale Richtung "r"

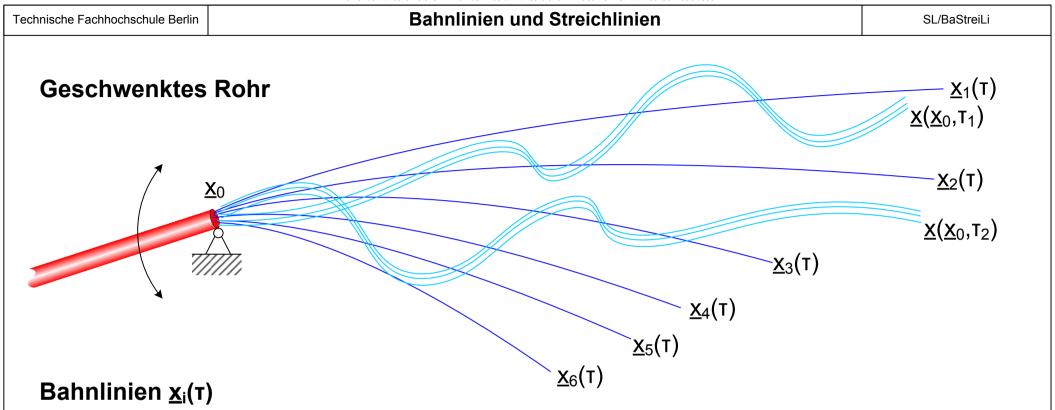
von der Rohrmitte zur Wand hin gerichtet Einheitsvektor drehbar wie ein Zeiger

azimutale Richtung "φ"

gibt den Drehwinkel des Einheitsvektors der radialen Richtung an

Basis, Einheitsvektoren

Darstellung eines Punktes in Zylinderkoordinaten

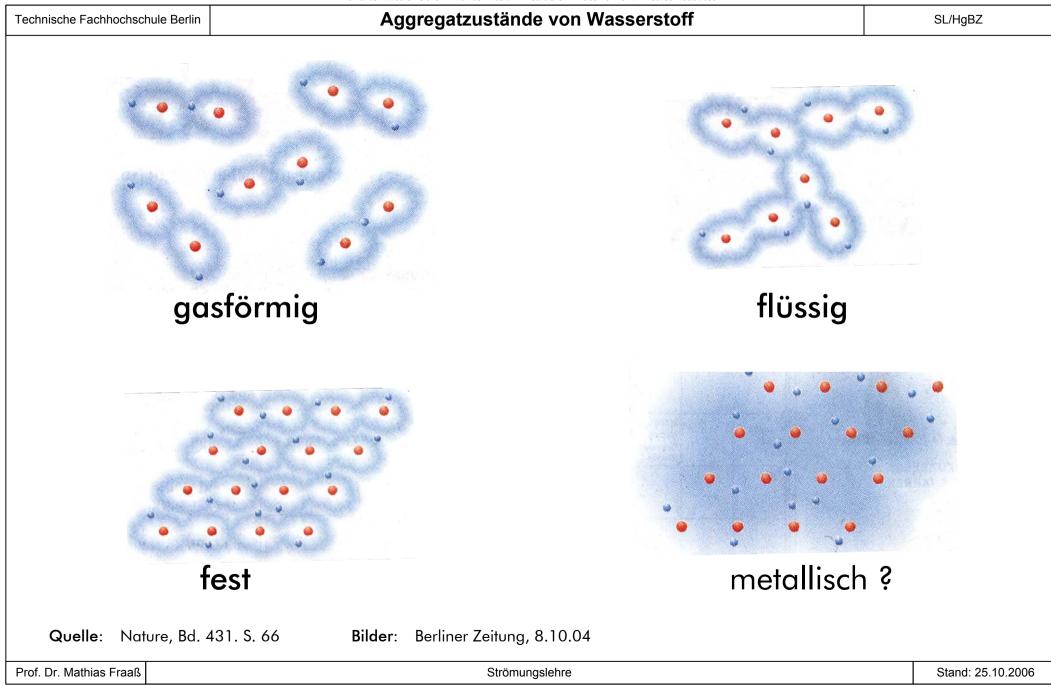

Linearkombination

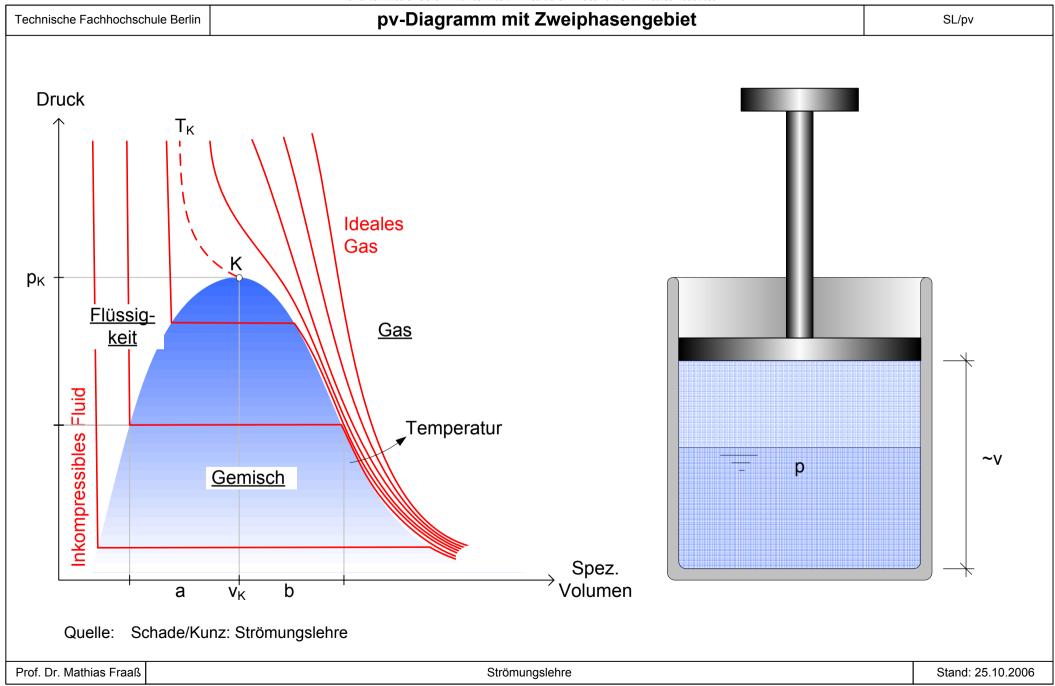
$$\underline{x}(x,r,\phi) = x \underline{e}_x + r \underline{e}_r + \phi \underline{e}_{\phi}$$

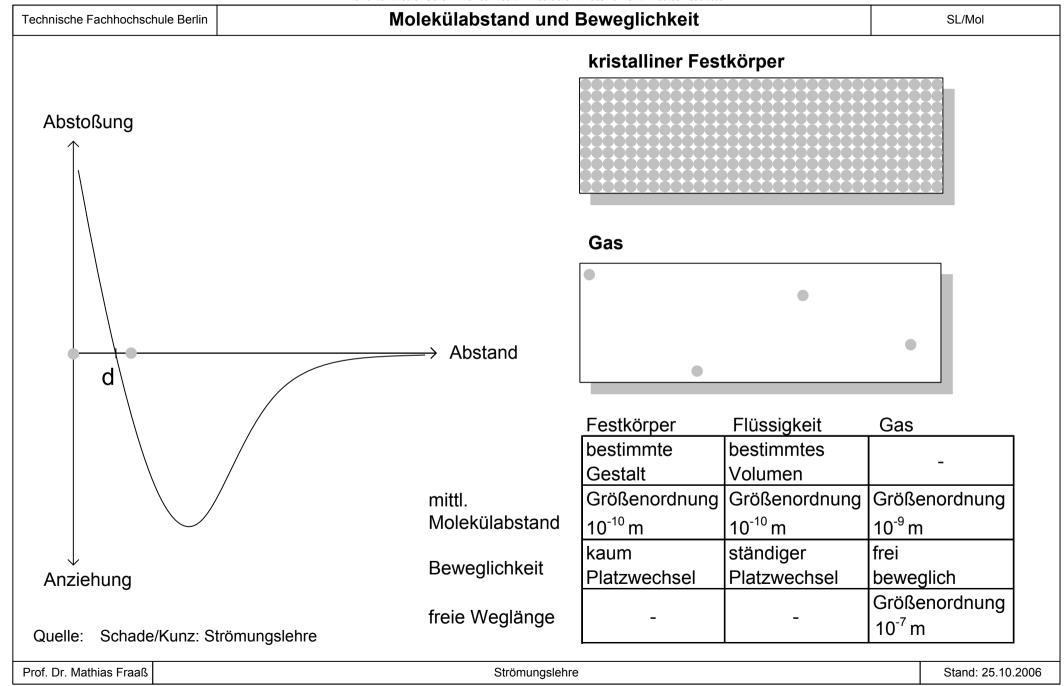
Z.B. $\underline{x}(1,R,\pi/2)$: 1 m ins Rohr hinein, an der Oberkante

Prof. Dr. Mathias Fraaß

Strömungslehre

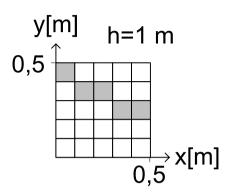

- Bahnen, die die Teilchen, beginnend vom Ort \underline{x}_0 im Laufe der Zeit τ beschreiben
- zusammengesetzt aus Orten
- Langzeitaufnahmen


Streichlinien $\underline{x}(\underline{x}_0, \tau_i)$


- Kurven zu einem Zeitpunkt τ_i aus allen Teilchen, die von einem Ort \underline{x}_0 kommen
- zusammengesetzt aus Teilchen
- Momentaufnahmen

Prof. Dr. Mathias Fraaß Strömungslehre Stand: 25.10.2006

Zeitabhängigkeit in Strömungen Technische Fachhochschule Berlin SL/ctau jetzt später stationäre Strömung Im interessierenden Bereich ändern sich an allen Orten weder Betrag noch Richtung der Geschwindigkeit: $\underline{c} = c \underline{e}$ (Stromlinien gleich Bahnlinien) richtungsstationäre Strömung Im interessierenden Bereich ändert sich an allen Orten nicht die Richtung der Geschwindigkeit, aber ihr Betrag $\underline{\mathbf{c}} = \mathbf{c}(\tau) \underline{\mathbf{e}}$ (Stromlinien gleich Bahnlinien) instationäre Strömung Im interessierenden Bereich ändert sich die Geschwindigkeit mindestens nach der Richtung $\underline{\mathbf{c}} = \mathbf{c}(\tau) \ \underline{\mathbf{e}}(\tau)$ Prof. Dr. Mathias Fraaß Strömungslehre Stand: 25.10.2006

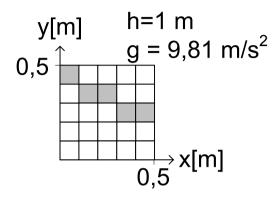


Kontinuumshypothese Technische Fachhochschule Berlin SL/KontHyp Idealisierte Vorstellung: An jedem Ort im Raum befindet sich ein Teilchen. Alle Feldgrößen verlaufen kontinuierlich. Meßgröße Vernach-Mikroskopische Makroskopische lässigbare Schwankungen Schwankungen Schwankungen Meßdurchmesser Physikalische Realität Diskontinuitätsfläche Schade/Kunz: Strömungslehre Strömungslehre Prof. Dr. Mathias Fraaß Stand: 25.10.2006

Extensive und intensive Größen

SL/IntExt

Masse/Dichte

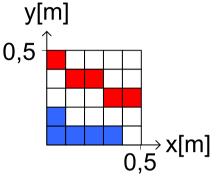

- $\square \rho = 1000 \text{ kg/m}^3$
- p=2000 kg/m³

$$m = \sum_{i=1}^{25} \rho_i \Delta V = 300 \text{ kg}$$

$$\rho_{m} = \frac{1}{25} \sum_{i=1}^{25} \rho_{i} \Delta V$$
$$= 1.2 \text{ kg/m}^{3}$$

$$m = \int_{(V)} \rho dV$$

Kraft/Kraftdichte


- $\square \rho = 1000 \text{ kg/m}^3$
- $\square \rho = 2000 \text{ kg/m}^3$

$$F_G = \sum_{i=1}^{25} \rho_i g \Delta V = 2943 N$$

$$p_{m} = \frac{1}{0,25 \text{ m}^{2}} \sum_{i=1}^{25} \rho_{i} g \Delta V$$
$$= 117,72 \text{ mbar}$$

$$F_G = \int_{(V)} \rho g dV$$

Thermische Energie/ Temperatur

h=1 m ρ=1000 kg/m³ c_{th}=1000 J/(kg K)

- ☐ t=20°C
- t=10°C
- = t=30°C

$$U = \sum_{i=1}^{25} \rho_i c_{th,i} T_i \Delta V = 73,2875 \text{ MJ}$$

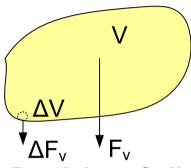
$$T_{m} = \frac{\sum_{i=1}^{25} \rho_{i} c_{th,i} T_{i} \Delta V}{\sum_{i=1}^{25} \rho_{i} c_{th,i} \Delta V} = 293,15 \text{ K}$$

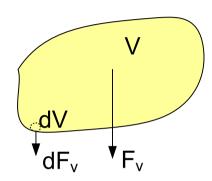
$$t_{m} = 20^{\circ} C_{th,i} \Delta V$$

$$U = \int_{(V)} \rho \ c_{th} \ T \ dV$$

Extensive Größe: Bereichsgröße, teilbar

Intensive Größe: Ortsgröße, integrierbar


Prof. Dr. Mathias Fraaß


Strömungslehre

Volumen- und Oberflächenkräfte

SI /FvFa

Volumenkraft

Bereichsaufteilung

n Teilvolumina ∧V infinitesimal kleine dV

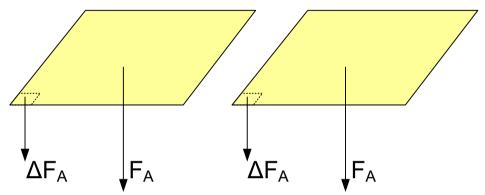
$$V = \sum_{(n)} \Delta V$$

$$V = \sum_{(n)} \Delta V \qquad \qquad V = \lim_{n \to \infty} \sum_{(n)} \Delta V = \int_{(V)} dV \qquad \qquad A = \sum_{(n)} \Delta A \qquad \qquad A = \lim_{n \to \infty} \sum_{(n)} \Delta A = \int_{(A)} dA$$

Kraftaufteilung

$$F_V = \sum_{(n)} \Delta F_V$$

$$F_V = \sum_{(n)}^{(n)} f_V \Delta V$$


$$F_{V} = \sum_{(n)} \Delta F_{V} \qquad F_{V} = \lim_{n \to \infty} \sum_{(n)} \Delta F_{V} = \int_{(V)} dF \qquad F_{A} = \sum_{(n)} \Delta F_{A} \qquad F_{A} = \lim_{n \to \infty} \sum_{(n)} \Delta F_{A} = \int_{(A)} dF \qquad F_{A} = \lim_{n \to \infty} \sum_{(n)} \Delta F_{A} = \int_{(A)} dF \qquad F_{A} = \lim_{n \to \infty} \sum_{(n)} \Delta F_{A} = \int_{(A)} dF \qquad F_{A} = \lim_{n \to \infty} \sum_{(n)} \Delta F_{A} = \int_{(A)} dF \qquad F_{A} = \lim_{n \to \infty} \sum_{(n)} \Delta F_{A} = \int_{(A)} dF \qquad F_{A} = \lim_{n \to \infty} \sum_{(n)} \Delta F_{A} = \int_{(A)} dF \qquad F_{A} = \lim_{n \to \infty} \sum_{(n)} \Delta F_{A} = \int_{(A)} dF \qquad F_{A} = \lim_{n \to \infty} \sum_{(n)} \Delta F_{A} = \int_{(A)} dF \qquad F_{A} = \lim_{n \to \infty} \sum_{(n)} \Delta F_{A} = \int_{(A)} dF \qquad F_{A} = \lim_{n \to \infty} \sum_{(n)} \Delta F_{A} = \int_{(A)} dF \qquad F_{A} = \lim_{n \to \infty} \sum_{(n)} \Delta F_{A} = \int_{(A)} dF \qquad F_{A} = \lim_{n \to \infty} \sum_{(n)} \Delta F_{A} = \int_{(A)} dF \qquad F_{A} = \lim_{n \to \infty} \sum_{(n)} \Delta F_{A} = \int_{(A)} dF \qquad F_{A} = \lim_{n \to \infty} \sum_{(n)} \Delta F_{A} = \int_{(A)} dF \qquad F_{A} = \lim_{n \to \infty} \sum_{(n)} \Delta F_{A} = \int_{(A)} dF \qquad F_{A} = \lim_{n \to \infty} \sum_{(n)} \Delta F_{A} = \int_{(A)} dF \qquad F_{A} = \lim_{n \to \infty} \sum_{(A)} \Delta F_{A} = \int_{(A)} dF \qquad F_{A} = \lim_{n \to \infty} \sum_{(A)} \Delta F_{A} = \int_{(A)} dF \qquad F_{A} = \lim_{n \to \infty} \sum_{(A)} \Delta F_{A} = \int_{(A)} dF \qquad F_{A} = \lim_{n \to \infty} \sum_{(A)} \Delta F_{A} = \int_{(A)} dF \qquad F_{A} = \lim_{n \to \infty} \sum_{(A)} \Delta F_{A} = \int_{(A)} dF \qquad F_{A} = \lim_{n \to \infty} \sum_{(A)} \Delta F_{A} = \int_{(A)} dF \qquad F_{A} = \lim_{n \to \infty} \sum_{(A)} \Delta F_{A} = \int_{(A)} dF \qquad F_{A} = \lim_{n \to \infty} \sum_{(A)} \Delta F_{A} = \int_{(A)} dF \qquad F_{A} = \lim_{n \to \infty} \sum_{(A)} \Delta F_{A} = \int_{(A)} dF \qquad F_{A} = \lim_{n \to \infty} \sum_{(A)} \Delta F_{A} = \int_{(A)} dF \qquad F_{A} = \lim_{n \to \infty} \sum_{(A)} \Delta F_{A} = \int_{(A)} dF \qquad F_{A} = \int_{$$

Kraftdichte

$$f_V$$
: $f_g = \rho g$

$$f_V$$
: $f_g = \rho g$ Gewichtskraft $F_g = \int_{(V)} \rho g dV$

Oberflächenkraft

n Teilflächen ∧A

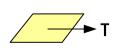
$$A = \sum_{(n)} \Delta A$$

$$F_A = \sum_{(n)} \Delta F_A$$

$$F_A = \int_{(A)} f_A dA$$

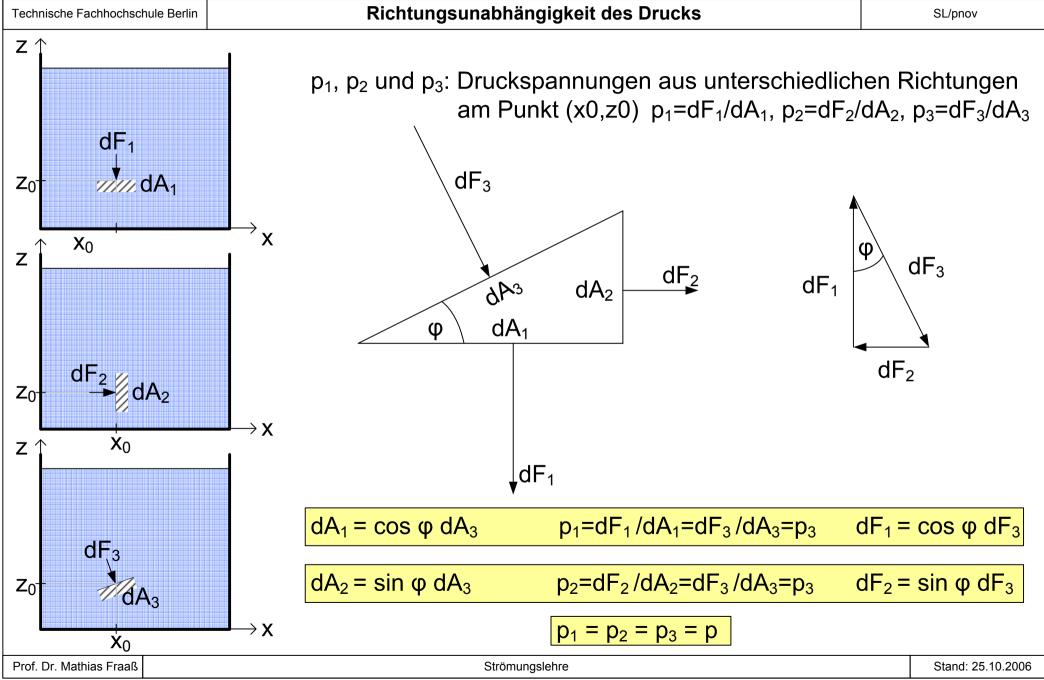
infinitesimal kleine dA

$$A = \lim_{n \to \infty} \sum_{(n)} \Delta A = \int_{(A)} dA$$

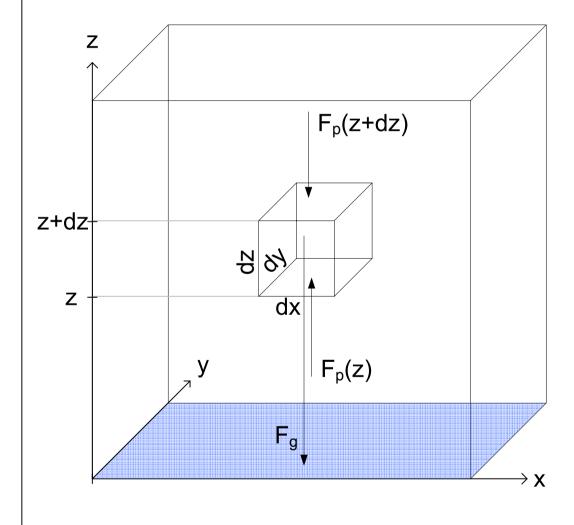

$$F_A = \lim_{n \to \infty} \sum_{(n)} \Delta F_A = \int_{(A)} dF$$

$$F_A = \sum_{(n)} f_A \Delta A$$

σ: Normalenspannung Zug-/ Druckspannung



Prof. Dr. Mathias Fraaß


Strömungslehre

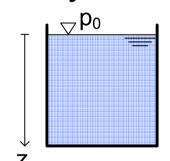
Grundgleichungen der Hydrostatik

SL/EulGGHs

Infinitesimal kleiner Quader in einem ruhenden Fluid:

Eulersches Grundgesetz der Hydrostatik

$$F_p(z)-F_p(z+dz)-F_g=0$$


$$F_g = dx dy dz \rho g$$

$$F_p(z) = dx dy p(z)$$

$$F_p(z+dz) = dx dy p(z+dz)$$

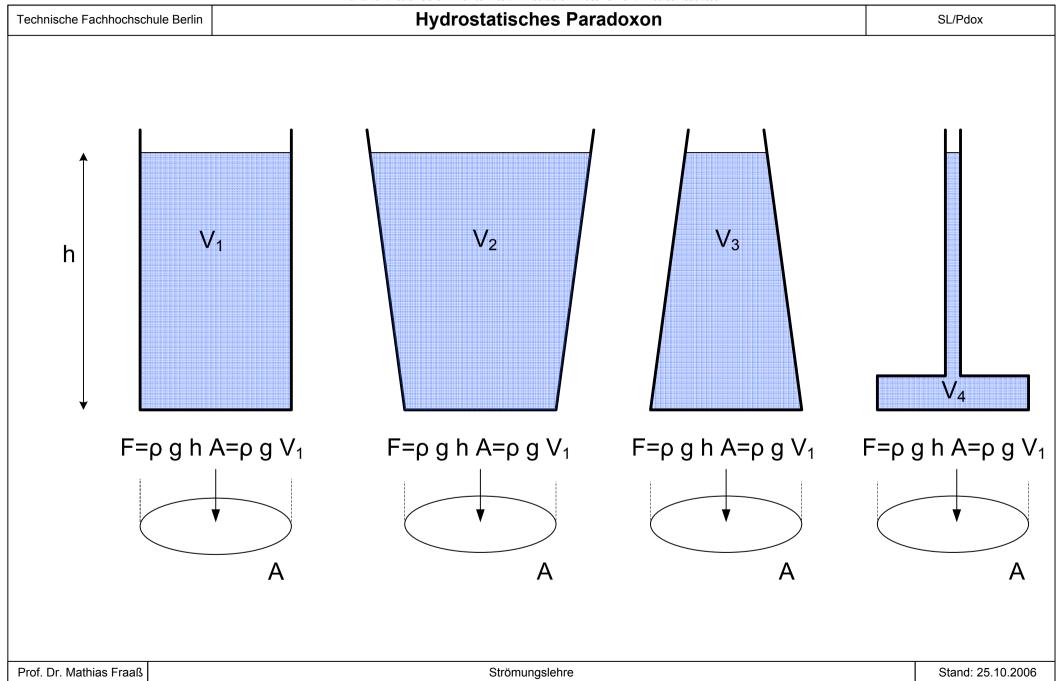
$$dp/dz = -\rho g$$

Hydrostatische Druckverteilung

ρ=const.

$$p(z)=p_0+p g z$$

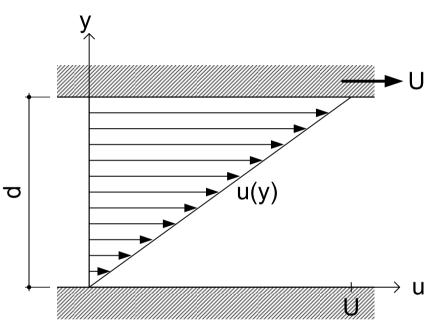
Barotrope Schichtung

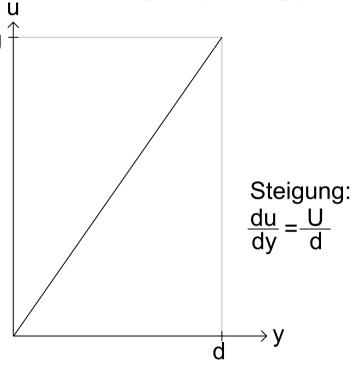

 $\rho(z)=p(z)/(R T)$ dp/dz=- p(z) g/(R T)

 $p(z) = p0 e^{g/(R T)z}$

Prof. Dr. Mathias Fraaß

Strömungslehre




Couette-Strömung und Newtonsches Fluid

SL/NewtFI

Scherströmung (Couette-Strömung) zwischen zwei Platten

Obere Platte wird mit Geschwindigkeit U gegen untere Platte verschoben In einem Newtonschen Fluid bildet sich folgendes Geschwindigkeitsprofil u(y) aus:

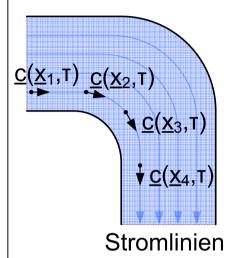
Newtonsches bzw. linear- viskoses Fluid

Schubspannungsaufnahme: $\tau = \eta \frac{du}{dy}$ Linear-viskos wg. der Proportionalität von τ und von u(y)

η: dynamische Zähigkeit (eta) oder auch Viskosität in kg/(m s) bzw. Pa s

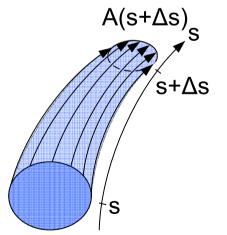
 $v = \frac{\eta}{\rho}$: kinematische Zähigkeit (ny) in m²/s

Prof. Dr. Mathias Fraaß


Strömungslehre

echnische Fachhochschule Berlin	Dynam	ische Zähigkeit von \	Wasser und Luft	SL/eta			
t °C	η Wasser 10 ⁻⁵ kg/(m s)	η Luft 10 ⁻⁵ kg/(m s)					
0	180	1,7	Flüssigkeiten: Höhere Schwingungs	samplitude.			
20	100	1,8	vermehrte Platzwechsel bei höhe				
40	60	1,9	Temperatur				
60	50	2,0	Gase: vermehrte Zusammenstöße in Scherrichtung bei höherer				
80	40	2,1					
100	30	2,2	Temperatur				
kinematische 2	Zähigkeit: $v = \frac{\eta}{\rho}$		η (eta): dynamische v (ny): kinematisch ρ (rho): Dichte	<u> </u>			

Strömungslehre


Prof. Dr. Mathias Fraaß

Technische Fachhochschule Berlin SL/Stroli

Stromlinien

- weisen in jedem Punkt in die Richtung der Strömungsgeschwindigkeit
- zusammengesetzt aus allen Teilchen
- Momentaufnahmen.

A(s)

Stromröhre

- zwei Stirn- und eine Mantelfläche
- Mantelfläche wird durch Stromlinien gebildet
- Teilchen können nur durch die Stirnflächen hindurchtreten

Stromfaden

Stromröhre, in der alle Größen über den Querschnitt hinweg konstant sind

Prof. Dr. Mathias Fraaß Strömungslehre Stand: 25.10.2006

Technische Fachhochschule Berlin

Bilanzgleichungen

SL/BiGl

Bilanzgleichung

Gleichung über die zeitliche Änderung einer Größe (Bilanzgröße, z.B. Menschenzahl) in einem Bilanzbereich (z.B. Berlin). Allgemeine Form:

Zeitliche Änderung der Bilanzgröße im Bereich = Transportströme in den Bereich + Wandlungsströme im Bereich

Transportströme in den Bereich (z.B. täglich nach Berlin Reisende) tragen positives Vorzeichen, Transportströme aus dem Bereich (z.B. täglich aus Bln. Ausreisende) tragen negatives Vorzeichen. Wandlungen, die zu einer Vermehrung der Bilanzgröße im Bereich führen (z.B. tägliche Geburten in Berlin) tragen positives Vorzeichen, Wandlungen, die zu einer Minderung führen (z.B. tägliche Sterbefälle) tragen negatives Vorzeichen.

Im stationären Fall ist die linke Seite Null, d.h. die Bilanzgröße ändert sich nicht. Alle Transport und Wandlungsströme gleichen sich dann genau aus. Änderts sich z.B. an einem Tag die Zahl der Menschen in Berlin nicht, muß die Summe aller Ein- und Ausreisenden, aller Geburten und aller Sterbefälle an diesem Tag Null sein.

In der Strömungs- und Wärmelehre interessierende Bilanzbereiche

- 1. materielle, aus Teilchen bestehende Volumen, 2. raumfeste, aus Orten bestehende Volumen, 3. einzelne Punkte im Raum
- 4. Stromfäden als Sonderfall eines raumfesten Volumens.

Bilanzgrößen werden meist als Bereichsintegrale einer intensiven Größe (Ortsgröße) dargestellt.

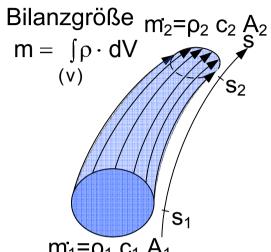
Z.B. ist die Masse eines Wassertropfens gleich dem Volumenintegral der Dichte im Tropfen.

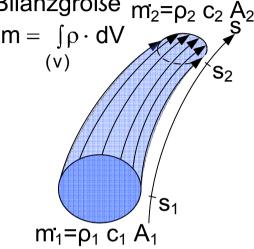
In der Strömungs- und Wärmelehre interessierende Bilanzgrößen

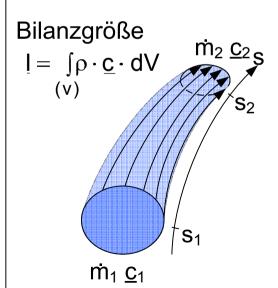
Masse, Impuls, Energie

In der Strömungs- und Wärmelehre auftretende Transportströme

- 1. immaterielle Transporte (Konduktion), z.B. Wärmeleitung und Oberflächenkräfte,
- 2. materielle Transporte (Konvektion), z.B. ein- und austretender Massenstrom, Eintritts- und Austrittsenthalpie (materielle Transporte treten bei einem raumfesten Volumen wie z.B. einem Stromfaden oder einem Punkt im Raum auf).


Wandlungen


Kräfte, die auf alle Teilchen des Bereichs wirken (Volumenkräfte, z.B. Gewichtskraft) oder Energiewandlung (z.B. Strahlung)


Prof. Dr. Mathias Fraaß Strömungslehre Stand: 25.10.2006

Bilanzen in einem Stromfaden

SL/BIStrofa

Massenbilanz

<u>Bilanzgröße</u>

Masse m(τ) im Stromfaden

Materielle Transportströme (Konvektion)

Massenströme m

<u>Immaterielle Transportströme (Konduktion)</u>

keine

<u>Wandlungsströme</u>

keine

Impulsbilanz

<u>Bilanzgröße</u>

Impuls $\underline{I}(\tau) = \dot{m} \underline{c}(\tau)$ im Stromfaden

Materielle Transportströme (Konvektion)

Impulsströme m c

Immaterielle Transportströme (Konduktion)

Oberflächenkräfte:

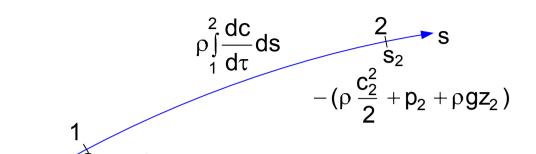
- 1. Druckkräfte an den Stirnflächen
- 2. Reibungskräfte (Schubspannungskräfte) an der Mantelfläche

Wandlungsstrom

Volumenkraft:

Reibungsfreies Fluid

→ Verlustterm


Gewichtskraft auf die Masse im Stromfaden

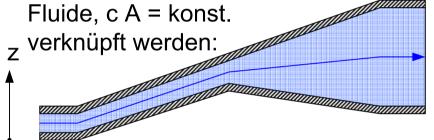
Prof. Dr. Mathias Fraaß

Strömungslehre

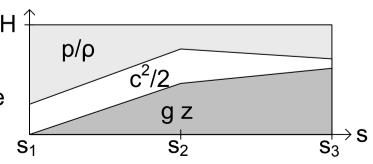
Bernoulli-Gleichung

SL/BrnI

Gleichung


$$\frac{c_1^2}{2} \cdot \frac{p_1}{\rho} \cdot gz_1 = \frac{c_2^2}{2} \cdot \frac{p_2}{\rho} \cdot gz_2 = H$$

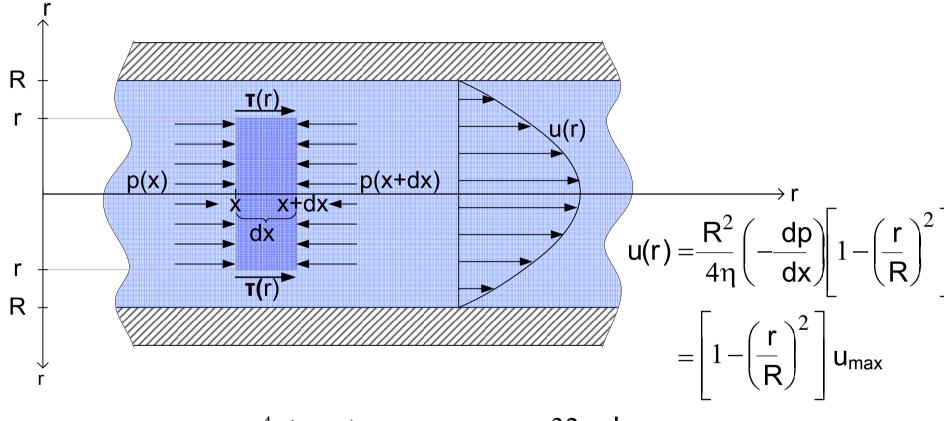
Voraussetzungen


- Stationarität: c = c(s), nicht $c = c(s,\tau)$
- inkompressibles Fluid: ρ = const.
- reibungsfreies Fluid, keine Schubspannungsaufnahme
- Schwerefeld als einziges Kraftfeld

Bernoulli-Diagramm

- Bernoullligleichung gilt nur zwischen zwei Punkten einer Stromlinie zur gleichen Zeit
- Wenn die Stromlinie Teil einer Stromröhre ist, kann die Bernoulli-Gleichung mit der Kontinuitätsgleichung für inkompressible

- 1.Schritt: g z nach z-Verlauf der Stromlinie
- 2.Schritt: c²/2 nach Querschnittsverlauf
- 3.Schritt: p/p auffüllen bis H=konst.


Prof. Dr. Mathias Fraaß

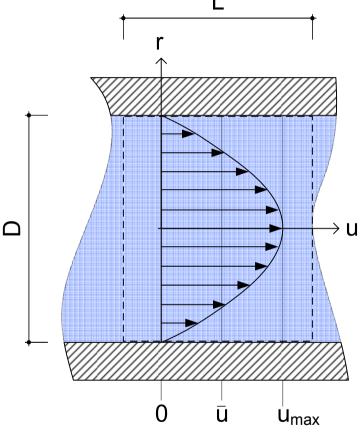
Strömungslehre

Laminare Rohrströmung

SL/HgPoi

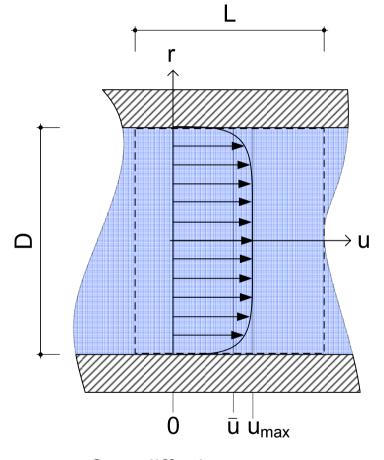
Auch: Hagen-Poiseuille-Strömung

$$\dot{V} = \frac{\pi R^4}{8\eta} \left(-\frac{dp}{dx} \right)$$


$$\Delta p_{V} = \frac{32\eta cL}{D^2}$$

Prof. Dr. Mathias Fraaß

Laminare und turbulente Rohrströmung

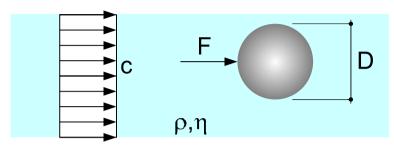

SL/LmTb

Laminare Strömung

plattenartige Strömung Re <= 2320, u_{max} = 2 \bar{u} λ =64/Re

Turbulente Strömung

Querdiffusion Re > 5000, $u_{max} \approx 1,25 \ \bar{u}$ $1/\sqrt{\lambda} = C_1 \cdot \ln(\sqrt{\lambda} \cdot \text{Re}) - C_2$


Prof. Dr. Mathias Fraaß

Strömungslehre

Dimensionsanalyse - Anwendung

SL/DAA

Beispiel Kraft auf umströmte Kugel

gesuchter Zusammenhang

$$F = f(D, \rho, c, \eta)$$

Allgemeine Dimensionsmatrix

	kg	m	S	
[D]	0	1	0	$[D] = kg^0 m^1 s^0$
[ρ]	1	-3	0	$[\rho] = kg^1 m^{-3} s^0$
[c]	0	1	-1	[c] = $kg^0 m^1 s^{-1}$
[η]	1	-1	-1	$[\eta] = kg^1 m^{-1} s^{-1}$
[F]	1	1	- 2	$[F] = kg^1 m^1 s^{-2}$

Natürliche Einheiten

3 linear unabhängige Spalten \Rightarrow 3 Einflußgrößen werden natürliche Einheiten, gewählt: D, ρ , c, verbleibend: F, η

Kriterielle Gleichung

$$\frac{F}{D^{m1} \rho^{m2} c^{m3}} = f(\frac{\eta}{D^{n1} \rho^{n2} c^{n3}})$$

Natürliche Dimensionsmatrix

Auffinden der Koeffizienten

$$\begin{split} & [\eta] = D^{m1} \; \rho^{m2} \; c^{m3} \; \Leftrightarrow \\ & kg^1 m^{-1} s^{-1} = (kg^0 m^1 s^0)^{m1} \, (kg^1 m^{-3} s^0)^{m2} \, (kg^0 m^1 s^{-1})^{m3} \\ & \Leftrightarrow \; kg^1 m^{-1} s^{-1} = kg^{m1} \; m^{m1-3 \; m2+m3} \, s^{-m3} \\ & \Leftrightarrow \; kg^1 = kg^{m2} \Leftrightarrow \; \underline{m2=1} \\ & \Leftrightarrow \; m^{-1} = m^{m1-3 \; m2+m3} \Leftrightarrow -1 = m1-3 \; m2+m3 \Leftrightarrow \underline{m1=1} \\ & s^{-1} = s^{-m3} \Leftrightarrow \; \underline{m3=1} \end{split}$$

[F] (analoge Rechnung): n1=2 n2=1 n3=2

$$\Rightarrow \frac{F}{D^2 \rho c^2} = f(\frac{\eta}{\rho D c}) = f(\frac{1}{Re}) \stackrel{\triangle}{=} f(Re) \Leftrightarrow \boxed{\widetilde{F} = f(Re)}$$

"dimensionslose Kraft" F nur von Re abhängig

Prof. Dr. Mathias Fraaß

Strömungslehre

SL/DAG

Größengleichung

zur Bestimmung interessierender Größen, z.B. $f(F,D, \rho, c, \eta)=0$, Lösungsformel: $F=f(D, \rho, c, \eta)$, als Zusammenhang zwischen einer interessierenden Größe F und deren Einflußgrößen D, ρ , c, η

Wertgleichung

zur Bestimmung von Werten der interessierenden Größen, z.B. explizit, gemäß einer Lösungsformel $\widetilde{\mathsf{F}}$ [F] = f($\widetilde{\mathsf{D}}$ [D], $\widetilde{\mathsf{p}}$ [ρ], $\widetilde{\mathsf{c}}$ [c], $\widetilde{\mathsf{\eta}}$ [η]) mit Zahlenwerten $\widetilde{\mathsf{F}}$, $\widetilde{\mathsf{D}}$, .. und Einheiten [F],[D], ..

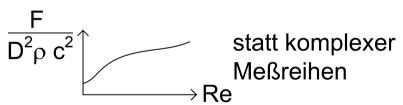
Zahlenwertgleichung

nach "Wegkürzen" von Einheiten, z.B. explizit als $\widetilde{F} = f(\widetilde{D}, \widetilde{\rho}, \widetilde{c}, \widetilde{\eta}) \Leftrightarrow \frac{F}{[F]} = f(\frac{D}{[D]}, \frac{\rho}{[\rho]}, \frac{c}{[c]}, \frac{\eta}{[\eta]})$

Einheitengleichung

Gleichung zw. den Einheitsgrößen, z.B. explizit als $[F] = f([D], [\rho], [c], [\eta])$ als Grundlage d. Zahlenwertgl. Voraussetzungen: 1. physikalische Homogenität der Größengleichung, 2. konsistentes Einheitensystem

Natürliche Einheiten


Einheitsgrößen aus der Problemstellung, z.B. Masse einer Kugel, statt allgemeiner Einheitsgrößen wie des Urkilogramms in Sevrés

Kriterielle Gleichung

Zahlenwertgleichung aus einer Wertgleichung mit natürlichen Einheiten, z.B. F=f(Re)

Nutzen kriterieller Gleichungen

- komprimierte Darstellung

- Ableitung physikalischer Ähnlichkeit

$$c_1 \xrightarrow{\mathsf{F}} \mathsf{D}_1 \, \widehat{=} \, \boxed{c_2 \xrightarrow{\mathsf{F}} \mathsf{D}_2}$$

Prof. Dr. Mathias Fraaß

Strömungslehre

Technische Fachhochschule Berlin			;	Stoffdaten von Wasser				S	SL/PrWa	
Wasser										
t	р	ρ	Ср	β	λ	η	ν	a	Pr	
°C	bar	kg/m³	J/(kg K)	10 ⁻³ /K	W/(m K)	10 ⁻⁶ kg/(m s) 10 ⁻⁶ m ² /s	10 ⁻⁶ m²/s	1	
0	1	999,8	4.218	-0,07	0,569	1750	1,751	0,131	13,00	
10	1	999,7	4.192	0,088	0,587	1300	1,304	0,138	9,28	
20	1	998,2	4.182	0,206	0,604	1000	1,004	0,143	6,94	
30	1	995,7	4.178	0,303	0,618	798	0,801	0,148	5,39	
40	1	992,2	4.178	0,385	0,632	653	0,658	0,151	4,30	
50	1	988,0	4.181	0,457	0,643	546	0,553	0,155	3,56	
60	1	983,2	4.184	0,523	0,654	466	0,474	0,158	2,96	
70	1	977,8	4.190	0,585	0,662	404	0,413	0,161	2,53	
80	1	971,8	4.196	0,643	0,669	355	0,365	0,164	2,20	
90	1	965,3	4.205	0,698	0,676	315	0,326	0,166	1,94	
100	1,013	958,1	4.216	0,755	0,681	279	0,291	0,168	1,73	
120	1,985	942,9	4.245	0,859	0,687	230	0,244	0,172	1,42	
							Qυ	elle: VDI-Wö	rmeatlas	
Prof. Dr. Mathias Fra	aaß			Strömun	gslehre			S	tand: 25.10.20	

Technische Fachhochschule Berlin			Sto	offdaten von		SL/PrLu			
Luft									
t	ρ	Ср	β	λ	η	ν	a	Pr	
°C	kg/m³	J/(kg K)	10 ⁻³ /K	W/(m K)	10 ⁻⁶ kg/(m s)	10 ⁻⁶ m ² /s	10 ⁻⁶ m ² /s	s 1	
-20	1,3765	1.006	3,962	0,0230	16,15	11,73	8,04	0,71	
0	1,2754	1.006	3,671	0,0245	17,10	13,41	9,96	0,70	
20	1,1881	1.007	3,419	0,0260	17,98	15,13	12,00	0,70	
40	1,1120	1.008	3,200	0,0275	18,81	16,92	14,30	0,69	
60	1,0452	1.009	3,007	0,0289	19,73	18,88	16,60	0,69	
80	0,9859	1.010	2,836	0,0304	20,73	21,02	19,10	0,69	
100	0,9329	1.012	2,684	0,0318	21,60	23,15	21,80	0,69	
120	0,8854	1.014	2,547	0,0332	22,43	25,33	24,50	0,68	
140	0,8425	1.017	2,423	0,0347	23,19	27,53	27,40	0,68	
160	0,8036	1.020	2,311	0,0361	24,01	29,88	30,50	0,68	
180	0,7681	1.023	2,209	0,0375	24,91	32,43	33,70	0,68	
200	0,7356	1.026	2,115	0,0389	25,70	34,94	37,00	0,68	
Duf Da Malkin, Su	Quelle: VDI-Wärmeatlas								
Prof. Dr. Mathias Fraa	115			Strömungslehre				Stand: 25.10.2006	