

Analyse und Optimierung des Recyclings von Farbeimern- Semesterprojekt -

Ab 2030 dürfen die Farbeimer nicht mehr wie heute entsorgt werden.

Die Studierenden hatten die Aufgabe, gebrauchte Farbeimer zu analysieren und für das gesetzlich geforderte Analyse von Eimern von der Baustelle [Gruppe 9] Recycling zu optimieren.

Erstellung des Projektplans [Gruppe 7]

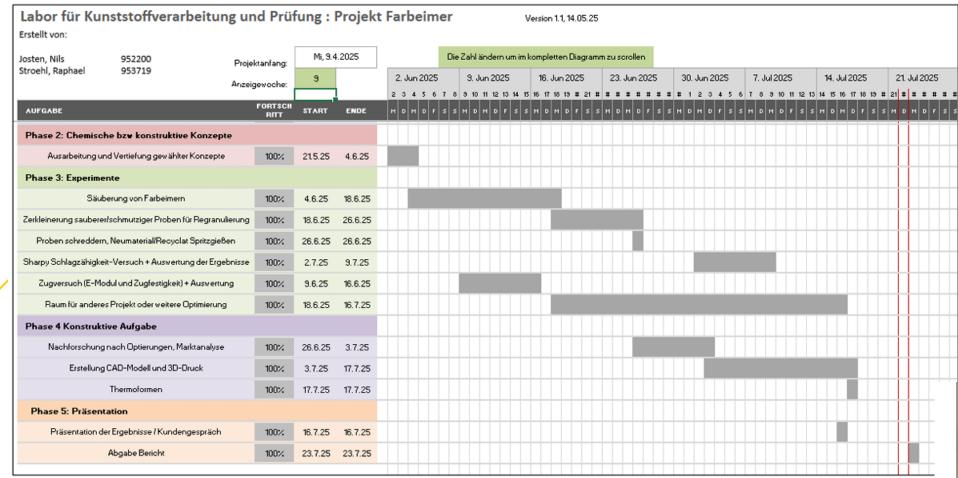
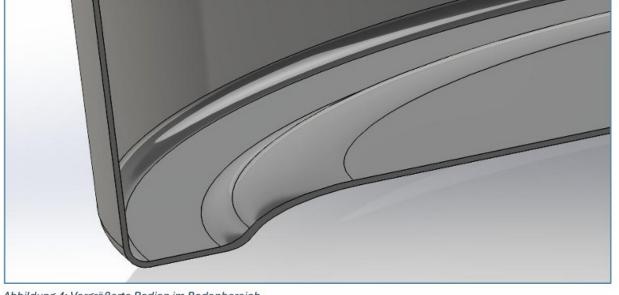


Abb. 9: Gantt-Diagramm 2.6 - 23.7.25

Festlegung der Anforderungen [Gruppe 9] (Auszug)

Anforderungsliste:


Datum:		14.05.2025				
Produ	ktbeschreibung:	Recycling von Farbeimern				
Nr.	Forderungsart	Anforderung	Vorgabe	Kunde	Version	
Α	Allgemeines					
A1	W	Eimerfarbe	Keine Vorgabe		V1	
A2	FF	Verwendungszweck	Baustelle, Heimwerkerbedarf		V1	
A3	MF	Etikett	tbd		V1	
A4	MF	Arbeitssicherheit	tbd		V1	
F	Funktional	nktional				
F1	MF	Dichtheit	flüssigkeitsdicht		V1	
F2	MF	Ergonomie (Griff)	tbd		V1	
F3	MF	Stapelbarkeit	Geschlossen & leer		V2 (14.05.25)	
F4	FF	Tragfähigkeit	Baustellentätigkeiten		V1	
F5	FF	Standfestigkeit	Gerader Boden		V1	
F6	FF	Deckelverschluss	wiederverschließbar		V1	
F7	FF	Schließkraft	tbd		V1	
F8	MF	Öffnungsmechanismus	Per Hand & ohne Werkzeug möglich, zerstörungsfrei		V2 (14.05.25)	
F9	MF	Max. benötigte Kraft zum Öffnen	tbd: Max. X N		V2 (14.05.25)	
F10	MF	Öffnungszyklen	Mind. X mal	Vorgabe vom Kunden	V2 (14.05.25)	
F11	FF	Dichtung	Flüssigkeitsdicht bis X bar		V1	
F12	MF	Wiederverschließbarkeit	Mind. X mal	Vorgabe vom Kunden	V2 (14.05.25)	
R	Recycling	Recycling				
R1	MF	Recyclinganteil	100% angestrebt		V1	
R2	MF	Wiederverwendung	Bei unbeschädigten Eimern		V1	

Optimierungsvorschlag [Gruppe 4]

Abbildung 15: FDM-Modell für Spannschellenverbindung

Optimierungsvorschlag [Gruppe 3]

Optimierung + 3D Druckmodell [Gruppe 4]

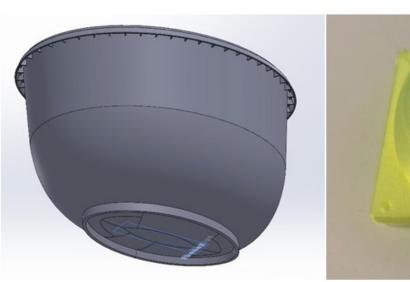
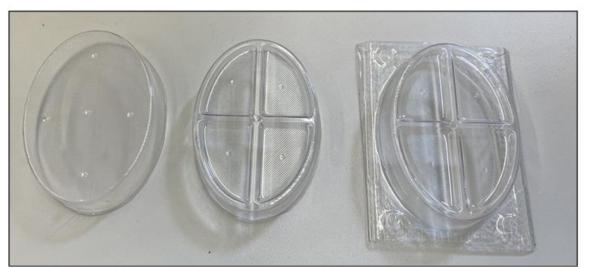



Abbildung 14: CAD Modell und FDM Druckmodell

Selbstständige Herstellung der Bauteile mit der Thermoformmaschine [Gruppe 9]

Weitere Informationen:

https://labor.bht-berlin.de/ksv

Abb. 22: Thermogeformte Böden

Tabelle 3: Einteilung der Eimer in Kategorien

	Kategorie A	Kategorie B	Kategorie C	Kategorie D
Beschreibung	nreibung Intakt - nur mit Farbresten verschmutzt Intakt - mit Farbresten sowie sonstigen Abfällen und Resten verschmutzt		Beschädigt - mit Farbresten verschmutzt	Beschädigt - mit Farbresten sowie sonstigen Abfällen und Resten verschmutzt
Material	PP	PP	PP	PP
Recyclingart	Wiederverwendung	Wiederverwendung	Wiederverwertung	Wiederverwertung
Bilder	lder			

Schwachstellenanalyse von Eimern von der Baustelle [Gruppe 1]

Abb. 5.3: Rissbildung im Bodenbereich eines gebrauchten Eimers

6.6 Erkenntnisse und Auswirkungen auf das Design Beobachtung Optimierungspotenzia schlecht entleerbar Ecken/Rillen Schwierige Entstapelung Entformungshilfe Reibungsverhalten Materialermüdung am Verstärkungsrippen odei Versprödung Materialwahl prüfen gut Reinigung mit Wasser nicht ausreichend Mechanische Reinigung Kratzfeste, glatte Oberfläche bedingt geeignet beschädigt Oberfläche entwickeln Brillux

Abb. 5.2: Stapelversuch mehrerer Eimer

Reinigen und Herstellen der Proben im Spritzgussverfahren aus den Eimern [Gruppe 5]

Abb. 10: Eimer vor Reinigung Fertigung Proben

Abb. 13: gereinigter Eimer

. lbb. 17: Proben aus Rezyklat

Konstruktion und 3D Druck von

Details der opt. Eimer [Gruppe 7]

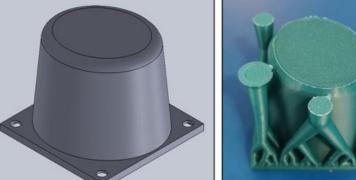
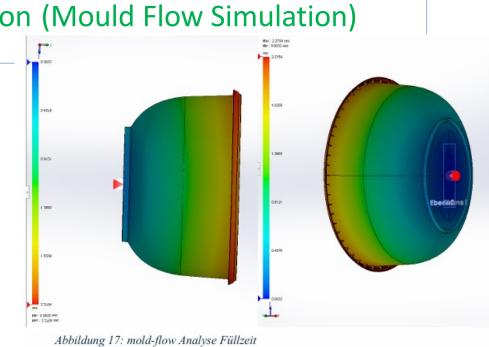


Abb. 28: CAD-Modell des optimierten Eimers


Abbildung 16: Herausgeschnittene Eimerform

Materialuntersuchungen [Gruppe 5]

Benchmark [Gruppe 4 + 9]

	Stabilität		Grundmaterial nur sehr schlecht wirtschaftlich trennen lassen.
eile	Stabiler und dadurch erhöhte Wahrscheinlichkeit der Wiederverwendung	Produkt besteht aus recycelter Pappe. Getrocknete Farbreste blättern nicht ab	Spezialanwendungen möglich
hteile	Gewicht, Preis	Instabil, geringes Fassungsvermögen, kein Deckel	Sehr schlecht recycelbar
lle	https://images-eu.ssl-images-	https://www.oekoplus.com/thumbnail	https://th.bing.com/th/id/R.f5377420e
	amazon.com/images/I/51nhHS9jzk	/a5/3b/2e/1611818712/ecoezee-	4c0c8d14c20fcdc53768127?rik=O0wu7m
	LSY300_QL70jpg	recycling-farbeimer_800x800.jpg	UX6M7PuQ&pid=ImgRaw&r=0
0	Wie fül	lt sich die F	Form? Spritz

guss-Simulation (Mould Flow Simulation) Gruppe 4

2_5 Tab. 5: Ergebnisse E-Modul

Berliner Hochschule für Technik

Prof. Dr. Jan.Roesler