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A Clothoidal Wall Follower  
 

This article is an extension of the Improved Wall Follower or partly builds on it. 
All the calculations made in the Improved Wall Follower regarding the 
distances between the robot and the walls are still valid. The differences 
made in this article only affect changes in that the robot in the Improved Wall 
Follower has already traveled exact circle segments, whereas the robot in this 
article drives - as the name of this article reveals - clothoids. 
 

Path control on straight-line segments with circles as 
transitions (Bahnsteuerung auf Geradenbahnsegmenten 
mit Kreisen als Übergänge) 
We remember the course of the movement - that is the trajectory (= 
Bahnkurve) - of the robot in the curves 
from the Improved Wall Follower: This 
consisted of the robot - while its moving 
along the wall - getting out of this 
driving the straight line (v¹0, w=0) and 
then turning into a corner by going 
directly into the arc (v¹0, w¹0). As soon 
as the corner piece, as a left or right 
curve, was finished, the robot again 
moved from the circular arc directly into 
another straight line piece (v¹0, w=0) in 
order to continue its driving along the 
wall. One such stretch, consisting of a 
straight line that merges into a circular 
arc, followed by another straight line 
leading out of the arc, is known as 
Dubins Path. [https://de.wikipedia.org/wiki/Klothoide] 
 
If you were to drive this path with a vehicle in reality, there would be two 
critical points. These are marked in red in the illustration above. These are the 
points at which the curvature of the path changes, as it changes from a 

Fig. 1   Dubin's Path 
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circular arc to a straight line (and vice versa). These points are critical, because 
at this point the curvature of the path is changed abruptly. Such a sudden 
change in the curvature means for the vehicle that at these points, the 
steering angle must be changed immediately. In reality, however, it is not 
possible to change the steering angle of a vehicle by any amount within an 
instant. The vehicle would therefore have to stop at the specified locations to 
adjust the steering angle to the new curvature. Otherwise, there is a risk that 
the vehicle will depart from the planned path. In addition, a sudden large 
change in the steering angle while driving can lead to dangerous situations in 
traffic. Furthermore, such behavior would be very uncomfortable for potential 
vehicle passengers, since sudden changes in steering angle can cause 
unpleasant side jerks. In order to avoid these problems, it is desirable to 
achieve a linear instead of a sudden change in the steering angle at such 
locations. The goal is to minimize lateral acceleration forces acting in and on 
the vehicle. So it should be generated a jerk-free driving dynamics, so ideally 
that in the case of following such a path no back pressure (=Querruck) is felt. 
This is where the clothoid comes into play. 
 
Path control on straight-line segments with clothoids as 
transitions 
The clothoid is a curve whose curvature is proportional to the distance 
traveled along the curve. The curvature increases linearly with the arc length 
of the curve.      

Fig. 2   Robot driving clothoide   (when turning, trajectories with continuous curvature are generated) 
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At the beginning of the clothoid curve (S), the value of the curvature is zero (= 
straight line) and the radius is the largest (Rmax). Then the curvature continues 
to increase up to the middle of the arc (S '), while at the same time the radius 
gets smaller and smaller (Rmin). From S 'to S' 'the conditions are reversed, the 
curvature decreases until the exit of the robot from the curve (S' ') to the 
same extent as it has risen before, and the radius becomes larger again. This 
process creates a smooth curve known as the Euler spiral. 

 

Such a trajectory is obtained by not setting omega to a fixed value, as was 
done in the case of driving the circle, but changing omega dynamically, 
proportionally and steadily. Omega is continuously increased in the path 
section S-S ', and it is reduced again in the path section S'-S "in the same way. 

The clothoid as a trajectory has the advantage over the circle that its 
curvature increases linearly and thus serves a jerk-free and smooth driving 
dynamics. Therefore, it is used as a transitional bend in road and railway 
curves. In the mathematical sense, smoothly means that the curvature of the 
curve is a continuous function of length. The clothoid thus improves the 
optical lines of a route. The driver of a vehicle perceives the roadway from a 
perspective, which, viewed in the direction of travel leads to a significant 
reduction in longitudinal development. Without a transitional bend, a change 
of curvature acts like a kink in the axis (Knick bzw. Sprung in der Achse). The 
clothoid as a transitional curve ensures that a curve is better perceived and 
thus correctly deflected. Even with roller coasters, also rail-bound vehicles, 
clothoids are used in order not to burden the passengers by strong lateral 
accelerations (=Querbeschleunigung). In the case of the roller coaster, the 
speed in each section of the route is known with little variation; thus, the 
applied transverse forces (=Querkräfte) can be almost completely eliminated 
by an adapted elevation of the curves. Prerequisite for this are transition 
bows (=Übergangsbögen). The same applies to the lift supports of cable car 
installations, in which the roller batteries are often built in the form of a 

Fig. 3   Dynamic Omega 
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clothoid, in order to offer the passengers of the lift system a higher degree of 
comfort. [https://de.wikipedia.org/wiki/Klothoide] 

Transition from the circle drive to the clothoid drive with 
the real robot 

We now want to exchange the driving of the robot on a pure circular path, as 
we know it from the Improved Wall Follower, by driving on a clothoid. The 
approach is actually quite simple: To construct a clothoid, we put in each of 
the two circular paths, which have determined the two cornerings of our 
robot in the Improved Wall Follower - named radiusCurveLeft and 
radiusCurveRight - a smaller circle - named radiusMinLeft for the left turn and 
radiusMinRight for the right turn. Purely from an intuitive estimation 
consideration, which looks visually good and seems quite fitting, we conclude 
that these two radii for the clothoid constructions should be exactly half the 
size of their initial radii. 

The following two figures show the relationships: 

Note: The "clothoids" shown in the two figures are mathematically far from accurate 
and not true to scale (nicht maßstabsgerecht). A clothoid has a sinusoidal course. The 

Fig. 4   Bot driving left clothoid 
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clothoids in the two figures are very simple auxiliary constructions: starting point is 
circle C1. This is compressed into an ellipse in C2 and enlarged in C3 to such an extent 
that it passes through the points S and S ". 

 

Formula relationships for the left and right curves with 
clothoid  

(Since this article is rather a treatise of great practical relevance, the 
derivations of the formulas are omitted here; they can be found in the 
relevant literature1) 

As mentioned above, we have chosen empirically the radii for the clothoid 
endpoints (radiusMinRight and radiusMinLeft) half as large as the radii for the 
clothoid starting points (radiusCurveRight and radiusCurveLeft): 

𝑅"#$%#&'( = 0.5 ∗ 𝑟𝑎𝑑𝑖𝑢𝑠𝐶𝑢𝑟𝑣𝑒𝑅𝑖𝑔ℎ𝑡 

𝑅"#$:;<( = 0.5 ∗ 𝑟𝑎𝑑𝑖𝑢𝑠𝐶𝑢𝑟𝑣𝑒𝐿𝑒𝑓𝑡 

                                                             
1 e.g. [1] Path Generation with Clothoid Curve Using Image Processing for Two-Wheel-Drive 
Autonomous Mobile Robots - Hiroki Ishikawa, Katsuki Noguch, Ryutaro Maki, Haruo Naitoh 
[2] Pfadplanung mit stetiger Krümmung - Matthias Barde 

Fig. 5   Bot driving right clothoide 
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The pitch angle (=Steigungswinkel) at the end of the clothoid dL is the same 
for right and left cornering, as we (idealized) assume only right angles for the 
existences of curves. (If a robot unexpectedly hits another, such as a sharp 
corner less than 90 degrees, it must use its sensors to pound it out.) 

𝜗: = 90°− 0.5φ = 45° =
π
4

 

As a further value, we need the two maximum rotation speeds wmax for the 
vOmega interface, which can be calculated from the (fixed) translational 
velocities vForward and the minimal radii (see above): 

𝑅"#$ =
𝑣DEFGHFI
𝜔"HK

 

𝜔"HK%#&'( =
𝑣DEFGHFI
𝑅"#$%#&'(

 

𝜔"HK:;<( =
𝑣DEFGHFI
𝑅"#$:;<(

 

The last value of interest for our robot travel concerns the time duration for 
driving the clothoid tc. This is calculated from the length of the clothoid L and 
the translation speed vForward of the robot: 

𝐿 = 2 ∗ 𝜗: ∗ 𝑅"#$ 

𝐿F#&'( = 2 ∗ 𝜗: ∗ 𝑅"#$%#&'(  

𝐿M;<( = 2 ∗ 𝜗: ∗ 𝑅"#$:;<(  

and 

tcL =
2𝐿

vForward 

tcLM;<( =
2𝐿M;<(

vForward 

tcLF#&'( =
2𝐿F#&'(
vForward 

(internal note only: == clotLeftTime, clotRightTime in test-code) 

The total duration times determined here (=hier ermittelte 
Gesamtdauerzeiten) now only have to be divided into a suitable number of 
time segments (DeltaLtimeticks, NoLtimeticks) for passing through the clothoid of 
length L, in which the omega is gradually increased first from 0 to Omegamax 
and then lowered again. The following example shows this process with the 
following arbitrary values: 

wmax = 45° 

DeltaLtimeticks: 1s    
(Note: for smooth trajectories this "sampling time" should be sufficiently small, e.g. in the 
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millisecond range) 
(internal note only: == wallFollowerTick in test-code) 

tcL: 6s 

NoLYZ[\YZ]^_ =
𝑡𝑐𝐿

𝐷𝑒𝑙𝑡𝑎𝐿(#";(#cde
=
6𝑠
1𝑠 = 6 

(internal note only: == leftCurveTicks, rightCurveTicks in test-code) 

we(;hi#I(' =
w"HK

𝑁𝑜𝐿(#";(#cde/2
=
45°
3 = 15° 

 

NoLYZ[\YZ]^ 0 1 ∗
Dt
6  

 

2 ∗
Dt
6  

 

3 ∗
Dt
6  

 

4 ∗
Dt
6  

 

5 ∗
Dt
6  

 

0 

Omega w 0 15° 30° 45° 30° 15° 0 
(Note: Dt = DeltaLtimeticks) 

 

Which curve path is shorter for the robot, the circular path 
or the clothoid? 
Of particular academic interest there is the question which path is shorter, the 
circular path (from the Improved Wall Follower) or the clothoid. We want to answer 
the question by arithmetic. 

First the calculation of the length of the clothoid: 

𝐿 = 2 ∗ 𝜗: ∗ 𝑅"#$ 

𝐿 = 2 ∗
𝜋
4
∗
1
2
∗ 𝑟𝑎𝑑𝑖𝑢𝑠𝐶𝑢𝑟𝑣𝑒 = 	

𝜋
4
∗ 𝑟𝑎𝑑𝑖𝑢𝑠𝐶𝑢𝑟𝑣𝑒 

Since the entire clothoid consists of two halves, which is 2L, it follows 

𝐶𝑢𝑟𝑣𝑒cME('E#I; ==
𝜋
2
∗ 𝑟𝑎𝑑𝑖𝑢𝑠𝐶𝑢𝑟𝑣𝑒 

Now the length of the cirular path: 

𝐶𝑢𝑟𝑣𝑒c#FcM; =
2𝜋 ∗ 𝑟𝑎𝑑𝑖𝑢𝑠𝐶𝑢𝑟𝑣𝑒

4
=
𝜋
2
𝑟𝑎𝑑𝑖𝑢𝑠𝐶𝑢𝑟𝑣𝑒 

As the two calculations show, in the robot-driven curves for the clothoid and 
the circle both curves are the same length. As already described in detail 
above, the difference between the two curves lies in the advantageous, linear 
curvature course of the clothoid relative to the circle, which serves for a jerk-
free driving dynamics. 


