
 1

Andreas Döpkens
Brian Schüler

April 2018
[1.Rev. 2018-04-25]

An improved Wall Follower

At the latest after the implementation of the Wall-Follower State Machine, as
we presented it in the paper "The Wall Follower" (Döpkens 2014), it becomes
clear that the neat differentiation of States in terms of a redundancy-free,
logical inclusion of the possible (qualitative) sensor boundaries brings
significant improvements over a very simple Wall Follower, as we presented it
in our paper "Get Started On acaBot" (p. 78). However, creating this improved
code with finding suitable sensor values has been extremely cumbersome.
Even with such elaborate attempts to realize a "quiet" robot ride both along
the walls and in the curves, the result was not really satisfactory. The robot
drove too strong in so-called serpentine lines.

Now, in the Improved Wall Follower presented here, we want to make
changes that greatly or even completely reduce the use of the distance
sensors in terms of traversing the inside and outside curves. Instead of using
the distance sensors, the intensive use of the vOmega(v, w)-Interface takes
place. Driving straight ahead along a wall is still done using sensor values, but
in addition a P-controller is implemented. The above-mentioned
disadvantages are thereby eliminated, ie the bot will travel its way through
the maze much more stable and quieter, and also the laborious finding of
sensor values for a bot in the different states will be eliminated.

Implementation of a P-controller for straight-ahead driving
along a wall
In a simple robotic travel along a wall controlled only by a distance sensor
value, as we have known so far, the robot was steered away from the wall by
a fixed change in the omega value when the sensor detected that the robot
had come too close to the wall. The same was true in the opposite direction if
the robot had moved too far away from the wall. The hysteresis game of "Bot
too far away" and "Bot too close", which operated with fixed correction
values, inevitably moved the robot more or less serpentine.

Now, by replacing Omega's fixed correction values with dynamic correction
values that very accurately correct the robot's quantitative deviation from the

 2

wall proportionally, the rob's driving along the wall can be significantly
improved. By means of a so-called P-controller (or proportional controller),
the omega is proportionally changed in one direction or the other when the
robot has moved too far away from the wall or approached it, and so does
omega very little change, if the deviation of the robot from the wall is only
slight.

A P-controller has the following general appearance:

error (Vdiff) = (goal state (Vset) - measured state (Vact)) * kp 1

In the present case of a P-control for the correction of the lateral robot
distance from the wall, the equation takes the form:

omeganew = (distWallset - distWallact) * kp

The value for distWallset is fixed in the program. For example, we want the
robot to be 10 cm laterally from the wall while driving straight ahead. Through
constant, cyclic evaluation of the sensor facing the side wall, we continuously
receive the actual value for distWallact. If the difference between the values
distWallset and distWallact is zero, the robot is at the right distance from the
wall, and omega does not need to be changed (omega is zero). On the other
hand, if the robot is too close to the wall or away from it, omega assumes
positive or negative values, which in the vOmega interface corresponds to a
left or right cornering, meaning: The course of the robot will be corrected.

But hold on! We're not quite done here. In the above requirement, the bot
should travel along the wall a certain predetermined distance, e.g. at a
distance of 10 cm. "At a distance of" means that the robot should always be
parallel to the wall while driving along it. How does the robot know if it keeps
exactly the given distance to the wall on its journey?

1 In control engineering Vdiff is called control deviation (gr. Regelabweichung)
or control error (error, gr. Regelfehler). The factor kp is called the proportional
gain or force factor. This factor has to be determined empirically, ie you have to
guess a bit, and for that you need experience.

 3

So, again, we want the robot to
travel at a certain
predetermined distance to the
wall (distWallSet). The only
sensor we got to tell us what's
going on to the right of the bot
is sensor-R. Indeed, sensor-R
shows us a distance, but it is not
the predetermined distance we
need. Yet, in order to
sensorically tell, if the robot is at
the correct distance to the wall,
we can deploy sensor-R. But we
have to calculate a bit
beforehand and take the math.
Our knowledge of trigonometry
can help us.

Given and searched values are the following ones:

𝑏 = 𝑟𝑎𝑑𝑖𝑢𝑠𝐵𝑜𝑡 + 𝑑𝑖𝑠𝑡𝑊𝑎𝑙𝑙𝑆𝑒𝑡 = 𝐴𝑛𝑘𝑎𝑡ℎ𝑒𝑡𝑒

𝑐 = 𝑠𝑒𝑛𝑠𝑜𝑟𝑅𝑜𝑓𝑓𝑠𝑒𝑡 + 𝑑𝑖𝑠𝑡𝑊𝑎𝑙𝑙𝐴𝑛𝑔𝑙𝑒𝑆𝑒𝑡 = 𝐻𝑦𝑝𝑜𝑡ℎ𝑒𝑛𝑢𝑠𝑒

[Note: sensorRoffset = offset of sensor-R from the centre of the bot|

The value given is distWallSet (10 cm). The value searched is distWallAngleSet,
it is corresponding to distWallSet over Trigonometry. (This is the value we are
going to work with in our code.)

The trigonometric relationship between the two values is:

cos 𝛼 =
𝑏
𝑐

or

𝑐 =
𝑏

cos 𝛼

Fig. 1 Bot driving straight ahead

 4

and then

𝑑𝑖𝑠𝑡𝑊𝑎𝑙𝑙𝐴𝑛𝑔𝑙𝑒𝑆𝑒𝑡 =
𝑟𝑎𝑑𝑖𝑢𝑠𝐵𝑜𝑡 + 𝑑𝑖𝑠𝑡𝑊𝑎𝑙𝑙𝑆𝑒𝑡

cos 𝛼 − 𝑠𝑒𝑛𝑠𝑜𝑟𝑅𝑜𝑓𝑓𝑠𝑒𝑡

After these considerations, the above P-controller implemented in your code
should be changed to this:

omeganew = (distWallAngleset - distWallAngleact) * kp

Total waiver of sensor values for the cornering of the robot
In this improved Wall Follower, driving the corners, the robot will no longer be
tedious to "touch down" the wall with its sensors, but it will be set on a fixed
course using the vOmega interface. We will distinguish between two different
turns, both of which have their own characteristics. These are the left and
right bends (in a right-handed wall follower).

Driving a left turn
First, let's take a look at a left turn:

 5

As the above figure clearly shows, there is a minimum value for the radius of
curvature (radiusCurveLeft) that the bot should drive, and that is zero. In this
case, the robot moves straight from its position S to S ', stops, turns 90
degrees to the left on the spot, and then continues straight ahead, beyond S ".
We call this behavior path control with the decoupling of the straight line (v)
and angular velocity (w) (gr. Bahnsteuerung mit der Entkopplung von der
Geraden- und Winkelgeschwindigkeit). If such an edged curve should be
avoided, the radius for cornering must be increased. In the figure above the
radius is twice as large as the radius of the bot. How big the radius should be
chosen sensibly, cannot be said in general, because that depends on whether
the robot should drive later also in small, narrow niches in the labyrinth or
not. If the radius is too large, it is not possible for the bot to do so.

Depending on the selected radius radiusCurveLeft, the robot must turn left
out of its straight-ahead position, when the front sensor M supplies the
following value distFront:

Fig. 2 Bot driving left curve

 6

𝑑𝑖𝑠𝑡𝐹𝑟𝑜𝑛𝑡 = 𝑟𝑎𝑑𝑖𝑢𝑠𝐶𝑢𝑟𝑣𝑒𝐿𝑒𝑓𝑡 + 𝑟𝑎𝑑𝑖𝑢𝑠𝐵𝑜𝑡 + 𝑑𝑖𝑠𝑡𝑊𝑎𝑙𝑙𝑆𝑒𝑡
− 𝑠𝑒𝑛𝑠𝑜𝑟𝑀𝑜𝑓𝑓𝑠𝑒𝑡

sensorMoffset is the value that the sensor M is located away from the center
of the robot.

Driving a right turn
When driving a right turn, the starting conditions and boundary conditions are
slightly different for the robot than for the left turn (see above).

As shown in the figure below, the robot cannot immediately turn right when
the R sensor signals that the wall end has been reached, but the robot must
first move a little further straight ahead. In the figure, this route is marked
with "freeDrive". (The meaning of freeDrive derives from the fact that no
sensor sees an obstacle and therefore the bot "runs free".) Making use of
trigonometry again, this value can be easily calculated, since freeDrive is the
same as the counterkathete a.

𝑓𝑟𝑒𝑒𝐷𝑟𝑖𝑣𝑒 = 𝑎 = 𝑏 ∗ tan 𝛼 = (𝑟𝑎𝑑𝑖𝑢𝑠𝐵𝑜𝑡 + 𝑑𝑖𝑠𝑡𝑊𝑎𝑙𝑙𝑆𝑒𝑡) ∗ tan 𝛼

 7

While the radius in the left curve (s.a.) could be at different values and -
depending on the task - had to be chosen meaningful, it becomes clear from
the above figure that this option does not exist for the radius of the right turn.
In this case, there is an optimal radius radiusCurveRight, which is the sum of
radiusBot and distWallSet.

𝑟𝑎𝑑𝑖𝑢𝑠𝐶𝑢𝑟𝑣𝑒𝑅𝑖𝑔ℎ𝑡 = 𝑟𝑎𝑑𝑖𝑢𝑠𝐵𝑜𝑡 + 𝑑𝑖𝑠𝑡𝑊𝑎𝑙𝑙𝑆𝑒𝑡

Fig. 3 Bot driving right curve

